January 26, 2024 John Cable Triangle 17855 Elk Prairie Drive P.O. Box 1026 Rolla, MO 65402 TEL: (573) 364-1864 FAX: (573) 364-4782 **RE:** RPS-Rolla High School WorkOrder: 24010249 Dear John Cable: TEKLAB, INC received 60 samples on 1/3/2024 12:57:00 PM for the analysis presented in the following report. Samples are analyzed on an as received basis unless otherwise requested and documented. The sample results contained in this report relate only to the requested analytes of interest as directed on the chain of custody. NELAP accredited fields of testing are indicated by the letters NELAP under the Certification column. Unless otherwise documented within this report, Teklab Inc. analyzes samples utilizing the most current methods in compliance with 40CFR. All tests are performed in the Collinsville, IL laboratory unless otherwise noted in the Case Narrative. All quality control criteria applicable to the test methods employed for this project have been satisfactorily met and are in accordance with NELAP except where noted. The following report shall not be reproduced, except in full, without the written approval of Teklab, Inc. If you have any questions regarding these tests results, please feel free to call. Sincerely, Elizabeth A. Hurley Elizabeth a Hurley Director of Customer Service (618)344-1004 ex 33 ehurley@teklabinc.com Illinois 100226 Kansas E-10374 Louisiana 05002 Louisiana 05003 Oklahoma 9978 ### **Report Contents** http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 Client Project: RPS-Rolla High School Report Date: 26-Jan-24 #### This reporting package includes the following: | Cover Letter | 1 | |-------------------------|----------| | Report Contents | 2 | | Definitions | 3 | | Case Narrative | 5 | | Accreditations | 6 | | Laboratory Results | 7 | | Quality Control Results | 9 | | Receiving Check List | 13 | | Chain of Custody | Appended | #### **Definitions** http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 Client Project: RPS-Rolla High School Report Date: 26-Jan-24 #### Abbr Definition - * Analytes on report marked with an asterisk are not NELAP accredited - CCV Continuing calibration verification is a check of a standard to determine the state of calibration of an instrument between recalibration. - CRQL A Client Requested Quantitation Limit is a reporting limit that varies according to customer request. The CRQL may not be less than the MDL. - DF Dilution factor is the dilution performed during analysis only and does not take into account any dilutions made during sample preparation. The reported result is final and includes all dilution factors. - DNI Did not ignite - DUP Laboratory duplicate is a replicate aliquot prepared under the same laboratory conditions and independently analyzed to obtain a measure of precision. - ICV Initial calibration verification is a check of a standard to determine the state of calibration of an instrument before sample analysis is initiated. - IDPH IL Dept. of Public Health - LCS Laboratory control sample is a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes and analyzed exactly like a sample to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. - LCSD Laboratory control sample duplicate is a replicate laboratory control sample that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request). - MBLK Method blank is a sample of a matrix similar to the batch of associated sample (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences should present at concentrations that impact the analytical results for sample analyses. - MDL "The method detection limit is defined as the minimum measured concentration of a substance that can be reported with 99% confidence that the measured concentration is distinguishable from method blank results." - MS Matrix spike is an aliquot of matrix fortified (spiked) with known quantities of specific analytes that is subjected to the entire analytical procedures in order to determine the effect of the matrix on an approved test method's recovery system. The acceptable recovery range is listed in the QC Package (provided upon request). - MSD Matrix spike duplicate means a replicate matrix spike that is prepared and analyzed in order to determine the precision of the approved test method. The acceptable recovery range is listed in the QC Package (provided upon request). - MW Molecular weight - NC Data is not acceptable for compliance purposes - ND Not Detected at the Reporting Limit - NELAP NELAP Accredited - PQL Practical quantitation limit means the lowest level that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operation conditions. - RL The reporting limit the lowest level that the data is displayed in the final report. The reporting limit may vary according to customer request or sample dilution. The reporting limit may not be less than the MDL. - RPD Relative percent difference is a calculated difference between two recoveries (ie. MS/MSD). The acceptable recovery limit is listed in the QC Package (provided upon request). - SPK The spike is a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery deficiency or for other quality control purposes. - Surr Surrogates are compounds which are similar to the analytes of interest in chemical composition and behavior in the analytical process, but which are not normally found in environmental samples. - TIC Tentatively identified compound: Analytes tentatively identified in the sample by using a library search. Only results not in the calibration standard will be reported as tentatively identified compounds. Results for tentatively identified compounds that are not present in the calibration standard, but are assigned a specific chemical name based upon the library search, are calculated using total peak areas from reconstructed ion chromatograms and a response factor of one. The nearest Internal Standard is used for the calculation. The results of any TICs must be considered estimated, and are flagged with a "T". If the estimated result is above the calibration range it is flagged "ET" - TNTC Too numerous to count (> 200 CFU) #### **Definitions** http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 Client Project: RPS-Rolla High School Report Date: 26-Jan-24 #### Qualifiers - # Unknown hydrocarbonC RL shown is a Client Requested Quantitation Limit - H Holding times exceeded - J Analyte detected below quantitation limits - ND Not Detected at the Reporting Limit - S Spike Recovery outside recovery limits - X Value exceeds Maximum Contaminant Level - B Analyte detected in associated Method Blank - E Value above quantitation range - I Associated internal standard was outside method criteria - M Manual Integration used to determine area response - R RPD outside accepted recovery limits - T TIC(Tentatively identified compound) ### **Case Narrative** http://www.teklabinc.com/ Work Order: 24010249 Report Date: 26-Jan-24 Client: Triangle Client Project: RPS-Rolla High School Cooler Receipt Temp: N/A °C #### Locations | | Collinsville | | Springfield | | Kansas City | |---------|-----------------------------|---------|----------------------------|---------|-----------------------| | Address | 5445 Horseshoe Lake Road | Address | 3920 Pintail Dr | Address | 8421 Nieman Road | | | Collinsville, IL 62234-7425 | | Springfield, IL 62711-9415 | | Lenexa, KS 66214 | | Phone | (618) 344-1004 | Phone | (217) 698-1004 | Phone | (913) 541-1998 | | Fax | (618) 344-1005 | Fax | (217) 698-1005 | Fax | (913) 541-1998 | | Email | jhriley@teklabinc.com | Email | KKlostermann@teklabinc.com | Email | jhriley@teklabinc.com | | | Collinsville Air | | Chicago | | | | Address | 5445 Horseshoe Lake Road | Address | 1319 Butterfield Rd. | | | | | Collinsville, IL 62234-7425 | | Downers Grove, IL 60515 | | | | Phone | (618) 344-1004 | Phone | (630) 324-6855 | | | | Fax | (618) 344-1005 | Fax | | | | | Email | EHurley@teklabinc.com | Email | arenner@teklabinc.com | | | ### **Accreditations** #### http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 | State | Dept | Cert # | NELAP | Exp Date | Lab | |-----------|------|---------|-------|-----------|--------------| | Illinois | IEPA | 100226 | NELAP | 1/31/2025 | Collinsville | | Kansas | KDHE | E-10374 | NELAP | 4/30/2024 | Collinsville | | Louisiana | LDEQ | 05002 | NELAP | 6/30/2024 | Collinsville | | Louisiana | LDEQ | 05003 | NELAP | 6/30/2024 | Collinsville | | Oklahoma | ODEQ | 9978 | NELAP | 8/31/2024 | Collinsville | | Arkansas | ADEQ | 88-0966 | | 3/14/2024 | Collinsville | | Illinois | IDPH | 17584 | | 5/31/2025 | Collinsville | | Iowa | IDNR | 430 | | 6/1/2024 | Collinsville | | Kentucky | UST | 0073 | | 1/31/2024 | Collinsville | | Missouri | MDNR | 00930 | | 5/31/2023 | Collinsville | | Missouri | MDNR | 930 | | 1/31/2025 | Collinsville | # **Laboratory Results** http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 Client Project: RPS-Rolla High School Report Date: 26-Jan-24 Matrix: DRINKING WATER | | Client Sample ID | Certification | Qual RL | Result | Units | DF | Date Analyzed | Date Collected | |---------------|------------------|----------------|---------|----------|-------|----|-------------------------------------|-------------------| | - | 200.8 R5.4, META | | | | | | | | | Lead | 200.0 No.4, META | LO DI IOI MO (| IOTAL) | | | | | | | 24010249-001A | 1-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 11:07 | 12/30/2023 10:00 | | 24010249-002A | 1-B | NELAP | 0.0010 |
< 0.0010 | mg/L | 1 | 01/17/2024 11:11 | 12/30/2023 10:00 | | 24010249-003A | 2-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 11:16 | 12/30/2023 10:00 | | 24010249-004A | 2-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 11:20 | 12/30/2023 10:00 | | 24010249-005A | 3-A | NELAP | 0.0010 | 0.0011 | mg/L | 1 | 01/17/2024 11:37 | 12/30/2023 10:00 | | 24010249-006A | 3-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 11:24 | 12/30/2023 10:00 | | 24010249-007A | 4-A | NELAP | 0.0010 | 0.0010 | mg/L | 1 | 01/17/2024 11:28 | 12/30/2023 10:00 | | 24010249-008A | 4-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 11:33 | 12/30/2023 10:00 | | 24010249-009A | 5-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 12:07 | 12/30/2023 10:00 | | 24010249-010A | 5-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 12:12 | 12/30/2023 10:00 | | 24010249-011A | 6-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 12:16 | 12/30/2023 10:00 | | 24010249-012A | 6-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 12:20 | 12/30/2023 10:00 | | 24010249-013A | 7-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 12:25 | 12/30/2023 10:00 | | 24010249-014A | 7-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 13:21 | 12/30/2023 10:00 | | 24010249-015A | 8-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 13:25 | 12/30/2023 10:00 | | 24010249-016A | 8-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 13:29 | 12/30/2023 10:00 | | 24010249-017A | 9-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:00 | 12/30/2023 10:00 | | 24010249-018A | 9-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 13:34 | 12/30/2023 10:00 | | 24010249-019A | 10-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:04 | 12/30/2023 10:00 | | 24010249-020A | 10-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:08 | 12/30/2023 10:00 | | 24010249-021A | 11-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:12 | 12/30/2023 10:00 | | 24010249-022A | 11-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:17 | 12/30/2023 10:00 | | 24010249-023A | 12-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:21 | 12/30/2023 10:00 | | 24010249-024A | 12-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:25 | 12/30/2023 10:00 | | 24010249-025A | 13-A | NELAP | 0.0010 | 0.0012 | mg/L | 1 | 01/17/2024 14:30 | 12/30/2023 10:00 | | 24010249-026A | 13-B | NELAP | 0.0010 | 0.0040 | mg/L | 5 | 01/26/2024 2:46 | 12/30/2023 10:00 | | 24010249-027A | 14-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:34 | 12/30/2023 10:00 | | 24010249-028A | 14-B | NELAP | 0.0010 | 0.0027 | mg/L | 1 | 01/17/2024 14:38 | 12/30/2023 10:00 | | 24010249-029A | 15-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:26 | 12/30/2023 10:00 | | 24010249-030A | 15-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 14:56 | 12/30/2023 10:00 | | 24010249-031A | 16-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:00 | 12/30/2023 10:00 | | 24010249-032A | 16-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:04 | 12/30/2023 10:00 | | 24010249-033A | 17-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:09 | 12/30/2023 10:00 | | 24010249-034A | 17-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:13 | 12/30/2023 10:00 | | 24010249-035A | 18-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:17 | 12/30/2023 10:00 | | 24010249-036A | 18-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:21 | 12/30/2023 10:00 | | 24010249-037A | 19-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/18/2024 8:37 | 12/30/2023 10:00 | | 24010249-038A | 19-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:52 | 12/30/2023 10:00 | | 24010249-039A | 20-A | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 15:56 | 12/30/2023 10:00 | | 24010249-040A | 20-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 16:00 | 12/30/2023 10:00 | | 24010249-041A | | NELAP | 0.0010 | 0.0013 | mg/L | 1 | 01/17/2024 16:05 | 12/30/2023 10:00 | | 24010249-042A | | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 16:09 | 12/30/2023 10:00 | | 24010249-043A | | NELAP | 0.0010 | 0.0014 | mg/L | 1 | 01/18/2024 8:20 | 12/30/2023 10:00 | | 24010249-044A | | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 16:18 | 12/30/2023 10:00 | | 24010249-045A | | NELAP | 0.0010 | 0.0044 | mg/L | 1 | 01/17/2024 16:48 | 12/30/2023 10:00 | | 24010249-046A | | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 16:52 | 12/30/2023 10:00 | | 24010249-047A | | NELAP | 0.0010 | 0.0052 | mg/L | 1 | 01/17/2024 17:18 | 12/30/2023 10:00 | | 24010249-048A | | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 16:57 | 12/30/2023 10:00 | | 2.0.0210010/(| =. - | | 0.0010 | 7 010010 | ∌, ⊑ | • | 5.7.1.7 2 5 2 1 10.07 | , 00, _ 020 10.00 | # **Laboratory Results** http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 Client Project: RPS-Rolla High School Report Date: 26-Jan-24 Matrix: DRINKING WATER | Sample ID | Client Sample ID | Certification | Qual RL | Result | Units | DF | Date Analyzed | Date Collected | |---------------|---------------------|-----------------|---------|----------|-------|----|------------------|------------------| | EPA 600 4.1.4 | I, 200.8 R5.4, META | LS BY ICPMS (TO | OTAL) | | | | | | | Lead | | | | | | | | | | 24010249-049 | A 25-A | NELAP | 0.0010 | 0.0238 | mg/L | 1 | 01/17/2024 17:01 | 12/30/2023 10:00 | | 24010249-050 | A 25-B | NELAP | 0.0010 | 0.0016 | mg/L | 1 | 01/17/2024 17:05 | 12/30/2023 10:00 | | 24010249-051 | A 26-A | NELAP | 0.0010 | 0.0095 | mg/L | 1 | 01/17/2024 17:09 | 12/30/2023 10:00 | | 24010249-052 | A 26-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 17:14 | 12/30/2023 10:00 | | 24010249-053 | A 27-A | NELAP | 0.0010 | 0.0010 | mg/L | 1 | 01/17/2024 17:44 | 12/30/2023 10:00 | | 24010249-054 | A 27-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 17:48 | 12/30/2023 10:00 | | 24010249-055 | A 28-A | NELAP | 0.0010 | 0.0130 | mg/L | 1 | 01/17/2024 17:53 | 12/30/2023 10:00 | | 24010249-056 | A 28-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 17:57 | 12/30/2023 10:00 | | 24010249-057 | A 29-A | NELAP | 0.0010 | 0.0047 | mg/L | 1 | 01/17/2024 18:14 | 12/30/2023 10:00 | | 24010249-058 | A 29-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 18:01 | 12/30/2023 10:00 | | 24010249-059 | A 30-A | NELAP | 0.0010 | 0.0064 | mg/L | 1 | 01/17/2024 18:06 | 12/30/2023 10:00 | | 24010249-060 | A 30-B | NELAP | 0.0010 | < 0.0010 | mg/L | 1 | 01/17/2024 18:10 | 12/30/2023 10:00 | http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 | EPA 600 4.1.4, 200.8 R5.4, ME | TALS BY | ICPMS | (TOTAL) | | | | | | | | |---|-----------------|--------------|---------------------------|---------------|-----------------|-------------|-------|-----------|----------------|------------------| | Batch216937SampType:SampID:MBLK-216937 | MBLK | U | Inits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | < 0.0010 | 0.0002 | 0 | 0 | -100 | 100 | 01/17/2024 | | Batch 216937 SampType:
SampID: LCS-216937 | LCS | U | Inits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | 0.0470 | 0.0500 | 0 | 93.9 | 85 | 115 | 01/17/2024 | | Batch 216937 SampType: SampID: 24010249-005AMS | MS | U | Inits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | E | 0.104 | 0.1000 | 0.001133 | 103.1 | 70 | 130 | 01/17/2024 | | Batch 216937 SampType: SampID: 24010249-005AMSD | MSD | U | Inits mg/L | | | | | RPD Lir | mit: 20 | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | RPD Ref V | al %RPD | Analyzed | | Lead | | 0.0010 | | 0.0998 | 0.1000 | 0.001133 | 98.6 | 0.1042 | 4.34 | 01/17/2024 | | Batch 216937 SampType: SampID: 24010259-043AMS | MS | U | Inits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | E | 0.137 | 0.1000 | 0.02000 | 117.2 | 70 | 130 | 01/18/2024 | | Batch 216937 SampType: SampID: 24010259-043AMSD | MSD | U | Inits mg/L | | | | | RPD Lir | mit: 20 | | | | a . | DI | 0 1 | D 1 | G 11 | SPK Ref Val | %REC | RPD Ref V | al 0/ BBD | Date
Analyzed | | Analyses
Lead | Cert | RL
0.0010 | Qual
E | Result 0.115 | Spike
0.1000 | 0.02000 | 95.3 | 0.1372 | 17.33 | 01/18/2024 | | Batch 216938 SampType: | MPLK | - 1 | Inits mg/L | | | | | | | | | SamplD: MBLK-216938 | MIDER | O | ilis ilig/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | < 0.0010 | 0.0002 | 0 | 0 | -100 | 100 | 01/17/2024 | | | | | | | | | | | | | | Batch 216938 SampType: SampID: LCS-216938 | LCS | U | Inits mg/L | | | | | | | Date | | 2 4002 | LCS Cert | RL U | Inits mg/L
Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Date
Analyzed | http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 | Batch 216938 SampType: | MS | L | Inits mg/L | | | | | | | | |--|------|--------|-------------------|----------|--------|-------------|--------|------------|----------------|------------------| | SampID: 24010249-018AMS | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | E | 0.114 | 0.1000 | 0.0004360 | 114.0 | 70 | 130 | 01/17/202 | | Batch 216938 SampType: | MSD | L | Inits mg/L | | | | | RPD Lin | nit: 20 | | | SamplD: 24010249-018AMSD | | | | | | | | | | Date
Analyzed
| | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | | RPD Ref Va | | | | Lead | | 0.0010 | E | 0.103 | 0.1000 | 0.0004360 | 102.3 | 0.1145 | 10.80 | 01/17/202 | | Batch 216938 SampType: SampID: 24010249-029AMS | MS | L | Inits mg/L | | | | | | | Dete | | Analyses | Cert | RL | Oual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Date
Analyzed | | Lead | CCIT | 0.0010 | E | 0.119 | 0.1000 | 0.0007492 | 118.6 | 70 | 130 | 01/17/202 | | Load | | 0.0010 | _ | 0.113 | 0.1000 | 0.0007432 | 110.0 | 70 | 150 | 01/11/202 | | Batch 216938 SampType: | MSD | L | Inits mg/L | | | | | RPD Lin | nit: 20 | | | SampID: 24010249-029AMSD | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | RPD Ref Va | al %RPD | Analyzed | | Lead | | 0.0010 | E | 0.116 | 0.1000 | 0.0007492 | 115.2 | 0.1193 | 2.92 | 01/17/202 | | Batch 216939 SampType: | MBLK | L | Inits mg/L | | | | | | | | | SampID: MBLK-216939 | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | < 0.0010 | 0.0002 | 0 | 0 | -100 | 100 | 01/17/202 | | Batch 216939 SampType: | LCS | L | Inits mg/L | | | | | | | | | SampID: LCS-216939 | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | 0.0470 | 0.0500 | 0 | 93.9 | 85 | 115 | 01/17/202 | | Batch 216939 SampType: | MS | L | Inits mg/L | | | | | | | | | SampID: 24010249-037AMS | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | 0.0891 | 0.1000 | 0 | 89.1 | 70 | 130 | 01/18/202 | | Satch 216939 SampType: | MSD | L | Inits mg/L | | | | | RPD Lin | nit: 20 | | | SampID: 24010249-037AMSD | | | | | | | | | | Date | | | G | DI | Ouel | Result | Spike | SPK Ref Val | %REC | RPD Ref Va | al %RPD | Analyzed | | Analyses | Cert | RL | Qual | Result | Spike | O | 70.120 | | , , , , | | http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 | SampID: 24010249-047AMS Analyses Lead Batch 216939 SampType: SampID: 24010249-047AMSD Analyses Lead | Cert | RL
0.0010 | Qual
E | Result | C '1 | | | | | Date | |---|------|--------------|------------------|----------|-----------------|-------------|-------|------------|----------------|------------------| | Lead Batch 216939 SampType: SampID: 24010249-047AMSD Analyses | | | | Resuit | | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | SampID: 24010249-047AMSD Analyses | MSD | | _ | 0.122 | Spike
0.1000 | 0.005175 | 116.5 | 70 | 130 | 01/17/202 | | Analyses | | U | nits mg/L | | | | | RPD Lim | nit: 20 | | | | | | | | | | | | | Date | | Lead | Cert | RL | Qual | Result | Spike | SPK Ref Val | | RPD Ref Va | | Analyzed | | | | 0.0010 | E | 0.113 | 0.1000 | 0.005175 | 107.6 | 0.1216 | 7.55 | 01/17/202 | | Batch 216940 SampType:
SampID: MBLK-216940 | MBLK | U | nits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | < 0.0010 | 0.0002 | 0 | 0 | -100 | 100 | 01/17/202 | | Batch 216940 SampType:
SampID: LCS-216940 | | | nits mg/L | D 1 | g '' | SPK Ref Val | 0/BEC | Low Limit | Lligh Lippit | Date
Analyzed | | Analyses | Cert | RL | Qual | Result | Spike | | %REC | Low Limit | High Limit | • | | Lead | | 0.0010 | | 0.0470 | 0.0500 | 0 | 93.9 | 85 | 115 | 01/17/202 | | Batch 216940 SampType: SampID: 24010249-057AMS | MS | U | nits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | E | 0.130 | 0.1000 | 0.004716 | 124.9 | 70 | 130 | 01/17/202 | | Batch 216940 SampType:
SampID: 24010249-057AMSD | MSD | U | nits mg/L | | | | | RPD Lim | nit: 20 | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | RPD Ref Va | al %RPD | Analyzed | | Lead | | 0.0010 | Е | 0.115 | 0.1000 | 0.004716 | 110.1 | 0.1296 | 12.04 | 01/17/202 | | Batch 216940 SampType: SampID: 24010250-007AMS | MS | U | nits mg/L | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | E | 0.118 | 0.1000 | 0.0009536 | 116.6 | 70 | 130 | 01/18/202 | | Batch 216940 SampType: | MSD | U | nits mg/L | | | | | RPD Lim | nit: 20 | | | SampID: 24010250-007AMSD | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | RPD Ref Va | al %RPD | Analyzed | http://www.teklabinc.com/ Client: Triangle Work Order: 24010249 | EPA 600 4.1.4, 200.8 R5.4, ME | ETALS BY | ICPMS | (TOTAL) | | | | | | | | |-------------------------------|----------|--------|-------------------|----------|--------|-------------|------|-----------|----------------|------------| | Batch 217640 SampType: | MBLK | L | Inits mg/L | | | | | | | | | SampID: MBLK-217640 | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | < 0.0010 | 0.0002 | 0 | 0 | -100 | 100 | 01/26/2024 | | | | | | | | | | | | | | Batch 217640 SampType: | LCS | L | Inits mg/L | | | | | | | | | SampID: LCS-217640 | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | | 0.476 | 0.5000 | 0 | 95.2 | 85 | 115 | 01/26/2024 | | | | | | | | | | | | | | Batch 217640 SampType: | MS | L | Inits mg/L | | | | | | | | | SampID: 24010250-048AMS | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | - | 0.459 | 0.5000 | 0.002802 | 91.3 | 70 | 130 | 01/26/2024 | | | | | | | | | | | | | | Batch 217640 SampType: | MSD | L | Inits mg/L | | | | | RPD Lir | nit: 20 | | | SampID: 24010250-048AMSD | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | RPD Ref V | al %RPD | Analyzed | | Lead | | 0.0010 | | 0.468 | 0.5000 | 0.002802 | 93.0 | 0.4595 | 1.81 | 01/26/2024 | | | | | | | | | | | | | | Batch 217640 SampType: | MS | L | Inits mg/L | | | | | | | | | SampID: 24010251-032AMS | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | Low Limit | High Limit | Analyzed | | Lead | | 0.0010 | E | 0.891 | 1.000 | 0.002569 | 88.9 | 70 | 130 | 01/26/2024 | | | | | | | | | | | | | | Batch 217640 SampType: | MSD | L | Inits mg/L | | | | | RPD Lir | nit: 20 | | | SamplD: 24010251-032AMSD | | | | | | | | | | Date | | Analyses | Cert | RL | Qual | Result | Spike | SPK Ref Val | %REC | RPD Ref V | al %RPD | Analyzed | | Lead | | 0.0010 | E | 0.931 | 1.000 | 0.002569 | 92.9 | 0.8914 | 4.38 | 01/26/2024 | | | | | | | | | | | | | ### **Receiving Check List** http://www.teklabinc.com/ Work Order: 24010249 Client: Triangle Client Project: RPS-Rolla High School Report Date: 26-Jan-24 Carrier: John Cable Received By: LEH Completed by: moon Ollauco Reviewed by: On: On: 03-Jan-24 03-Jan-24 Amber Dilallo Ellie Hopkins Extra pages included 8 Pages to follow: Chain of custody Shipping container/cooler in good condition? **✓** No 🗔 Not Present Temp °C N/A Type of thermal preservation? **~** Ice _ Blue Ice None Dry Ice Chain of custody present? **~** No L Yes Chain of custody signed when relinquished and received? **~** Yes No L **~** Chain of custody agrees with sample labels? No 🗀 Yes **~** No \square Samples in proper container/bottle? Yes **V** No 🗌 Sample containers intact? Yes Sufficient sample volume for indicated test? Yes **~** No **~** No \square All samples received within holding time? Yes NA 🗸 Field Lab 🗌 Reported field parameters measured: Yes 🗸 No 🗌 Container/Temp Blank temperature in compliance? When thermal preservation is required, samples are compliant with a temperature between 0.1°C - 6.0°C, or when samples are received on ice the same day as collected. Water - at least one vial per sample has zero headspace? Yes 🗌 No 🗀 No VOA vials 🗸 No TOX containers Water - TOX containers have zero headspace? Yes No 🗌 Yes 🗹 No 🗌 Water - pH acceptable upon receipt? NA 🗸 NPDES/CWA TCN interferences checked/treated in the field? Yes No 🗀 Any No responses must be detailed below or on the COC. Samples were checked for turbidity and then preserved with nitric acid upon arrival in the laboratory. | | | POI | | |--|--|-----|--| ### CHAIN OF CUSTODY Pg 1 of 1 Workorder # 24010240 TEKLAB INC, 5445 Horseshoe Lake Road, Collinsville, IL 62234 Phone (613) 344-1004 Fax (618) 344-1005 Client: TRIANGLE ENVIRONMENTAL SCIENCE AND ENGINEERING TICE BLUE ICE Samples on: Address: PO BOX 1026 LAR FOR LAB USE ONLY Preserved in: City/State/Zip: ROLLA, MO 65402 LAB NOTES: Contact: JOHN CABLE Phone: 573 308 0140 Client Comments: TRIANGLE.ENVIRONMENTAL Fax: @GMAIL.COM Email: V Are these samples known to be involved in litigation? If yes, a surcharge will apply: No V No Are these samples known to be hazardous? Yes Are there any required reporting limits to be met on the requested analysis?. If yes, please provide V No Yes limits in the comment section: INDICATE ANALYSIS REQUESTE # and Type of Containers PROJECT NAME/NUMBER SAMPLE COLLECTOR'S NAME JOHN W CABLE MeOH HCL H2SQ4 RESULTS REQUESTED BILLING INSTRUCTIONS NaOH HNO3 dSL TRIANGLE 1-2 Day (100% Surcharge) √ Standard 3 Day (50% Surcharge) Other Matrix Date/Time Sampled Lab Use Only Sample ID Drinking Water Drinking Water Drinking Water Drinking Water Drinking Water Drinking Wate Drinking Wate Drinking Wate
Drinking Wate Drinking Wate Drinking We a Date Tine Date/Tim Received By Relinguished By 2 55 JOHN W CABLE ^{*}The Individual signing this agreement on behalf of the client, acknowledges that he/she has read and understands the terms and conditions of this agreement, and that he/she has the authority to sign on behalf of the client. See www.teklabinc.com for terms and conditions | 311010 | 11/0 | | | | |------------|------|---------------------|--------------|------------------------------------| | 24010 | | ENDING/INSC MAINTED | LEAD | 12/20/22 @ 1000 | | | 11-A | DRINKING WATER | LEAD
LEAD | 12/30/23 @ 1000 | | | 1-B | DRINKING WATER | LEAD | 12/30/23 @ 1000
12/30/23 @ 1000 | | 003 | 2-A | DRINKING WATER | | 12/30/23 @ 1000 | | 004
005 | 2-B | DRINKING WATER | LEAD | | | • | 3-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 000 | 3-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | co | 4-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 900 P | 4-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 900 | 5-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OIO | 5-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 011 | 6-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | on | 6-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 013 | 7-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OH | 7-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 015 | 8-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Olle | 8-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 017 | 9-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | oir | 9-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OA | 10-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLO | 10-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 021 | 11-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLL | 11-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 023 | 12-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 024 | 12-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 015 | 13-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | $O2\omega$ | 13-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 027 | 14-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 028 | 14-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 029 | 15-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OSO | 15-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 031 | 16-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 032 | 16-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ට පුර | 17-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 034 | 17-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Ü35 | 18-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 0.360 | 18-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03) | 19-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 038 | 19-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 039 | 20-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 040 | 20-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 041 | 21-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | oin | 21-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 043 | 22-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 044 | 22-8 | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 045 | 23-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 046 | 23-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 047 | 24-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 24010149 | | | | |--|----------------|------|-------------------| | O48 24-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLA 25-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 000 | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Ο 1 26.B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OL_{27A} | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ω_{2} | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 004 | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 050e 28-B
057 29-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ○5 29-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 059 30-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O(10) 30-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 24018 31-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ₩ 31-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (D3 32-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | COH 32-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | COS 33-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OCU: 33-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (W) 34-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ₩ 34-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 009 35-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OI⊝ 35-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O _L 36-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | On 36-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (3 37-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O14 37-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 0/5 38-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OL 38-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | QQ 39-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/1 39-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 019 40-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 5LO 40-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (Z) 41-A | DRINKING WATER | LEAD | . 12/30/23 @ 1000 | | O22 41-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O23 42-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 024 42-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | U25- 43-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Q(o 43-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O27 44-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 028 44-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 029 45-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ()3 ○ 45-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | U31 46-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OJL 46-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OJ3 47-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 034 47-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | * | | | | | 2401035 | 6 | | | |------------------------|----------------------------------|--------------|------------------------------------| | O35 48-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03Ll 48-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O37) 49-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 038 49-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O39 50-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/O 50-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OHI 51-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ON 51-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OB 52-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ON 52-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OUS 53-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 046 23-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O4) 54-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OUF 54-B1 | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | <u>(ົ)ເປ</u> G55-A ຼີ | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O51 56-A | Drinking water | LEAD | 12/30/23 @ 1000 | | O52 56-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OS3 57-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 054 57-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 035 58-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OÎU 58-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | QS7 ^{59-A} | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OS 59-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OSG 60-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 06060-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 1010/SI 61-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | <u>00</u> 261-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 003 62-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OCU 62-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (₯5 63-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | € 63-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 007 64-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 00 € 64-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ○ 65-B
○ 66-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | lan. | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | DRINKING WATER | LEAD
LEAD | 12/30/23 @ 1000 | | (3 67-A | DRINKING WATER | | 12/30/23 @ 1000
12/30/23 @ 1000 | | 014 67-B | DRINKING WATER DRINKING WATER | LEAD
LEAD | 12/30/23 @ 1000 | | 05 68-A | | LEAD | 12/30/23 @ 1000 | | 0/168-B | DRINKING WATER DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 01) 69-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 015-69-B
019-70-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 01070-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 02/71-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OZ 71-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | AND A SALE MADE A SALE AS BOOK A | | ,, | | 2140000 | | | | |------------------------|----------------|------|-----------------| | 24010251
01372-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLY 72-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ULS 73-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OL 6 73-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 027 74-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 028 74-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 019 75-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03775-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03176-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03176-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03270-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 034 77-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 035 78-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 034 78-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O37 79-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03/79-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Q39 80-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 040 80-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 04 81-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OH 81-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 043 82-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O4O
82-M | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OUK 82-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Ο4(83-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O4 \ 84-A
O4 \ 84-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 04985-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | €50 85-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OS 86-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | C62 86-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O53 87-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ₩ 254 87-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 055 88-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O560 88-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Q57 89-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Û5√ 89-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 05990-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 000 90-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 24010/5/b1-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 007 91-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ©392-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 100L(92-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ©5 93-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ∞4 93-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OO7 94-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ₩ 94-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OS 95-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | | | | | 24010252 | | | | |--------------------------|----------------|--------------|------------------------------------| | 010 95-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O11 96-A | DRINKING WATER | | 12/30/23 @ 1000 | | ON 96-B | DRINKING WATER | | 12/30/23 @ 1000 | | O ₁ 3 97-A | DRINKING WATER | | 12/30/23 @ 1000 | | GY 97-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OI5 98-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 01\(\sigma 98-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OI 99-A | DRINKING WATER | | 12/30/23 @ 1000 | | O € 99-B | DRINKING WATER | | | | 019 100-A | DRINKING WATER | LEAD
LEAD | 12/30/23 @ 1000 | | OLO 100-B | DRINKING WATER | LEAD | 12/30/23 @ 1000
12/30/23 @ 1000 | | OL) 101-A | | | | | | DRINKING WATER | LEAD
LEAD | 12/30/23 @ 1000 | | O) 1 101-B | DRINKING WATER | | 12/30/23 @ 1000 | | () 4 102-A
() 4 102-B | DRINKING WATER | | 12/30/23 @ 1000 | | | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 0.5 103-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Ο) (103-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O) 104-A | DRINKING WATER | | 12/30/23 @ 1000 | | ○ <u>\</u> { 104-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | JL9 105-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O30 105-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 031 106-A | DRINKING WATER | | 12/30/23 @ 1000 | | 031 106-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 033 107-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03y 107-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 035 108-A | DRINKING WATER | | 12/30/23 @ 1000 | | 036 108-B | DRINKING WATER | | 12/30/23 @ 1000 | | 037 109-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 038 109-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 039 110-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 040110-B | DRINKING WATER | | 12/30/23 @ 1000 | | 04/ 111-A | DRINKING WATER | | 12/30/23 @ 1000 | | OHL 111-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/3 112-A | DRINKING WATER | | 12/30/23 @ 1000 | | CUY 112-B | DRINKING WATER | | 12/30/23 @ 1000 | | US 113-A | DRINKING WATER | | 12/30/23 @ 1000 | | O46 113-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O(1) 114-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (1) 114-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | C/G 115-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OSO 115-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OSJ 116-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O52 116-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | C53 117-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | C64 117-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 118-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O56 118-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | | | | | 040 -0C) | | | | |-------------------------|---|--------|-----------------| | 24010252 | D. 0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | | 42/20/22 0 4000 | | 05) 119-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | රා 119-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 059 120-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 21/0 120-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 240 1053
2121-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ∞1 121-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | の3122-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 어 122-B
연기 123-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 14J-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Que 123-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OO) 124-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ∞ ४ 124-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ∞9 125-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O _I 125-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OII 126-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | On 126-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 013 127-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OIY 127-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O15 128-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ONO 128-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O) 129-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OF 129-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 019 130-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | _{() ည()} 130-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ്വ 131-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OU_ 131-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O23 132-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O)L/ 132-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (<u>3.</u> 5 133-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ОДQ 133-В | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ()2) 134-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 028 134-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLG 135-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ეკი 135-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 031 136-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 032 136-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 033 137-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 034 137-B | DRINKING WATER | LEAD ' | 12/30/23 @ 1000 | | 035 138-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ∪3 ₄₀ 138-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 03) 139-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 139-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 039 140-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 040 140-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OH/ 141-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | J-N 141-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 043 142-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | | | | | | 01/01/0753 | | | | |----------------------------------|-------------------------------|--------------|------------------------------------| | 24010253 | | | 12/20/22 0 1000 | | 어년 142-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OHS 143-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 046 143-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OUT 144-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | JY8 144-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLP 145-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O50 145-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 05] 146-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OSZ 146-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 053147-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 054 147-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OS 148-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | COL 148-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 057 149-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 149-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 056 150-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 0 150-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 1401028 151-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 00) 151-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ©3 152-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 004 152-B
005 153-A | DRINKING WATER | LEAD
LEAD | 12/30/23 @ 1000 | | ουι 153-A | DRINKING WATER DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O() 154-A | DRINKING WATER | LEAD | 12/30/23 @ 1000
12/30/23 @ 1000 | | 00 / 154-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Ocy 155-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Or⊘ 155-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OH 156-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | On_ 156-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 93 157-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OIY 157-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 이중 158-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/6 158-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/) 159-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/F 159-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O/G 160-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | <i>(</i>)2 ₍) 160-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Q/ 161-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OZI 161-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 023 162-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | Ολ4 162-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 025 163-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OLG 163-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OL) 164-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ○28 164-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (J2G 165-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ⊖3⊖ 165-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 24010254 | | | | |----------------------|----------------|------|-----------------| | ○ ∂) 166-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | |
032 166-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O33 _{167-A} | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 034 167-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 035 168-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ○31⁄0168-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O37) 169-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O3F _{169-B} | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 039 170-a | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O40 170-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O41 171-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | ON 171-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 043 172-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | U44 172-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | CYS 173-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O46 173-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | () 174-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | OUF 174-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | JY9 175-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | (25) 175-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 05) 176-A | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O52 176-B | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | O53 ICE-1 | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | 054 ICE-2 | DRINKING WATER | LEAD | 12/30/23 @ 1000 | | · | | | |